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Abstract

The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using

tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention

as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational

cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a

few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D

instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D

numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the

spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds

numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow

around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical

solution an effective way of investigating flows around circular cylinders. Results are presented for three different

spanwise extensions, namely pD=2, pD and 2pD. The analysis of the force coefficients obtained for the various

Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a

comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of

vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to

estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension

is sufficient to accurately predict the flow past an infinitely long circular cylinder.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Circular cylinder; Three-dimensional wake; Numerical; Simulation
1. Introduction

Vortex-induced vibration (VIV), or flow-induced vibration (FIV), as it is sometimes referred to, has been the subject

of intensive research for many years as it is present in numerous practical applications such as in offshore engineering.

As the oil-field development activities moved into deeper waters and areas of stronger ocean currents, the importance of

(VIVs) becomes critical at the system design stages (Cook et al., 2000) as it can result in serious fatigue failure or
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uidstructs.2007.05.005

ing author.

ess: philip.wilson@soton.ac.uk (P.A. Wilson).

ess: Houlder Offshore Engineering Limited, 59 Lafone Street, London, UK.

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2007.05.005
mailto:philip.wilson@soton.ac.uk


ARTICLE IN PRESS
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interference and clashing. As most of the interesting fluid dynamic phenomena are present (Dalton, 2000) such as

boundary layer and boundary layer separation, laminar and turbulent flow, shear layer and shear layer roll up, vortices

and vortex shedding, and unsteady lift and drag, the task of capturing or predicting all of these represents a major

challenge.

The study of the flow around circular cylinders has been the centre of many investigations over the last 100 years and

it is now common knowledge that the flow around cylinders can be characterized essentially by two parameters, namely

the Reynolds number Re ¼ UD=n and the Strouhal number St ¼ fD=U , where U the upstream velocity, D is the

cylinder diameter, n the kinematic viscosity of the flow and f the frequency of the shedding of vortices from the cylinder.

The first definition of the flow regimes around a circular cylinder was given by Roshko (1955) who established a

Strouhal–Reynolds number relationship. His measurements of the velocity fluctuations, spectra and frequency allowed

for the identification of a transitional region for 150pRep300, while distinct irregularities could be observed for

Re4300.

Further evidence was provided in Williamson (1988) of the transition from 2-D to 3-D flows in the

Strouhal–Reynolds number relationship. Williamson also identified two stages in the transition to 3-D flows,

characterized by two discontinuities in the Strouhal–Reynolds number relationship, the first one at Re ¼ 178 and the

second for 230pRep260. Williamson further associated those discontinuities with a mode change in the shedding of

vortices in the cylinder wake (Williamson, 1996). The first mode, named mode A is characterized by the inception of

streamwise vortex loops. The primary vortices roll up and deform in a wavy pattern along their length during the

process of shedding to result in the local spanwise formation of vortex loops. The second mode, namely mode B,

associated with the second discontinuity, is characterized by the formation of finer-scale streamwise vortex pairs.

Reviewing the numerical simulations of vortex shedding, Williamson also noted the very good agreement found

between 3-D direct numerical simulation and experimental results and how the numerical solutions were capable of

capturing the two mode changes (Thompson et al., 1996). He further commented that the discontinuities observed in

the Strouhal–Reynolds number relationship were not achieved with 2-D numerical solutions as can be seen in Fig. 1.

In their study of 3-D vortex structures in a cylinder wake, Wu et al. (1996) used digital particle imaging velocimetry

(DPIV) to measure the instantaneous velocity field in the vertical plane in the near wake of a cylinder at Re ¼ 525. The

measured velocity field was then used to compute accurately the vorticity field. No visual evidence of the presence of the

two transitional modes presented by Williamson were found, but the importance of vortex stretching was shown. An

interesting comment raised by Wu et al. (1996) in the observation of the results is the remarkable regularity of the

vortices in the streamwise and spanwise directions, although some variability appeared due to the distortion of the

vortex sheet.

Numerical simulations of VIV excitation of circular cylinders using the solution of the Navier–Stokes equations

have been the focus of numerous studies in the literature, but essentially restricted to the 2-D simulations owing to the

limitation of the computational resources. Several aspects of the fluid-structure interactions are examined in these

works, among which are the computation of the forces acting on the cylinder, the shedding of vortices from

the cylinder, and the wake of the cylinder. But as the Reynolds numbers of interest for practical flow problems can

range from 105 to 106 (Vandiver, 2000), researchers focussed their numerical investigations on higher Reynolds

numbers and started encountering discrepancies between their 2-D numerical results and the experimental data.
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Fig. 1. Strouhal–Reynolds number relationship [from (Williamson, 1996)].
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The 3-D flow around a circular cylinder in a uniform flow was studied in Kalro and Tezduyar (1997) and found that

the results obtained for the Re ¼ 300 compared well with the 2-D results. Since 3-D effects appear for Re � 190, this

indicates that, for Re ¼ 300, weak 3-D features are present. On the other hand, the results they obtained for Re ¼ 800

were clearly different from the 2-D ones, indicating that the 3-D features were much stronger. They concluded that, as

the boundary layer is thinner at higher Reynolds number, the velocity gradients in the near-cylinder region are much

larger, thus implying the release of stronger vortices. It follows that the amplitude of the force coefficients in 2-D

simulations is larger at Re ¼ 800 than at Re ¼ 300. However, this is not seen in the 3-D computations since the vortices

are significantly distorted and possess components in addition to those in the spanwise directions.

The flow around 3-D cylinders at Re ¼ 100 and 200 was studied by Zhang and Dalton (1998), confirming the 2-D

nature of the flow for the Re ¼ 100 case. However, their results for the Re ¼ 200 case clearly show the presence of

distinct 3-D features and emphasized that the flow in the wake was becoming 3-D before it even becomes turbulent.

Furthermore, their studies stressed the importance of the proper representation of the flow in the wake as it has a

noticeable effect on the force coefficients and the Strouhal number. Zhang and Dalton also commented that, as 2-D

computations were still cheaper than 3-D solutions, if a cautious estimate of the effect of the lack of 3-D features could

be established, 2-D simulations could still provide a qualitative understanding of the flow.

Further details are presented in Breuer (1998) of the differences between the 2-D and 3-D computations by showing,

at Re ¼ 3900, the striking differences in the time-averaged streamline patterns characterized by the absence, in 2-D

results, of a recirculation zone behind the cylinder clearly showing in the 3-D results. Breuer noted that the 2-D field was

more asymmetrical than the 3-D one as the vortices shed from the cylinder moved downstream along an axis which is

inclined with reference to the symmetry line. As a consequence, the drag coefficient and the base pressure coefficient

were much too high in 2-D computations. He thus concluded that, even for nearly 2-D flow problems, 2-D

computations were useless as 3-D structures strongly influenced the near-wake flow.

In a later publication on the influence of subgrid-scale models for large-eddy simulations around circular cylinders in

3-D, Breuer (2000) noted that the flow around the circular cylinder was not only a function of the Reynolds number,

but also, among other factors, it was a function of the cylinder aspect ratio. He thus stressed that the difference between

numerical and experimental results were apparent and that the most relevant factor to evaluate numerical simulations

was the spanwise extension of the integration domain, often limited due to computational resources.

It is thus clear that 2-D numerical solutions are inadequate to describe practical flow problems, as they result

in an erroneous representation of the wake of the cylinder and cannot reproduce the 3-D features occurring

above Re � 190. Also, it has been found that 3-D simulations were in good agreement with experimental results.

However, such simulations are highly dependent on the spanwise extension of the domain considered. Furthermore,

to accurately predict the flow past the circular cylinder, particular attention has to be paid to the representation

of the flow field in the near vicinity of the cylinder and in its wake. An interesting issue concerns the aspect of the wake

of the cylinder at low Reynolds number. As it has been reported (Williamson, 1988) that the vortex pattern was

remarkably regular in the spanwise directions, and moreover that a spanwise periodicity of the flow occurs in the

wake, one can wonder, if such a periodicity exists, what is its spanwise extension and how it is affected by the different

flow regimes? If a periodicity really occurs in the spanwise direction, the problem of an infinitely long cylinder in a

flow would be reduced to that of a flow past a finite length cylinder, therefore reducing the computational cost

substantially.

In their study of the effect of the spanwise length on the modelling of flow over a circular cylinder, Lei et al. (2001)

concluded that a spanwise length less than two cylinder diameters was insufficient to achieve reliable results.

Furthermore, the quasiperiodic beat phenomenon observed experimentally in the lift and drag coefficient history can

only be observed for 3-D simulations with a spanwise extension greater than twice the cylinder diameter. However, their

investigation was carried out for Re ¼ 1000.

Furthermore, in the same study, the results obtained with a spanwise extension of four cylinder diameters suggested

there might be a relationship between this particular spanwise length and the real spanwise wavelength at Re ¼ 1000.

Since all the numerical solutions encountered in the literature are carried out with periodic boundary conditions on the

upper and lower part of the domain, a pseudo-periodicity is forced onto the flow. This implies that a reliable solution

using the periodic boundary condition can only be achieved if the extension matches an exact number of spanwise

wavelengths. It is however difficult, at the present stage of the research for flow around a circular cylinder, to predict

accurately such a spanwise wavelength.

The aim of the present research is to investigate the wake behind a circular cylinder and determine the influence of the

spanwise extension of the solution domain onto the 3-D solution for 100pRep1000. By carrying the solution to

different spanwise extensions and visualizing the 3-D features in the wake of the cylinder, the influence of the spanwise

extension of the domain on the solution will be assessed. It will then be possible to determine the minimum spanwise

extension required to capture accurately the 3-D flows around the cylinder.
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2. Numerical method

To carry out the numerical investigation of the effects of the spanwise extension on the flow past a circular cylinder, a

parallel 3-D incompressible Navier–Stokes equations solver on block-structured grids was developed. The complete

method, its implementation and validation can be found in Labbé (2004).

A numerical solution is composed of several components. The first and most critical one is the mathematical

formulation of the problem. For the purpose of the present work, the incompressible Navier–Stokes equations

expressed in body-fitted coordinates (i.e., curvilinear coordinates) and filtered for the large eddy simulation turbulence

model are the most suitable. In a nondimensional form and using the tensor notation the flow governing equations can

be written as follows:

Continuity:
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where Ret is the turbulent Reynolds number as obtained using one of the Structure Function LES models in Métais and

Lesieur (1992),

Ret ¼
U1D

0:063D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̄2ðx;DtÞ

p , (3)

with

F̄2 ¼ hkuðxþ rÞ � uðxÞk2ikrk¼1, (4)

D is the filter width, usually taken as an average of the mesh sizes. Details of the flow-governing equations are presented

in the Appendix A.1.

To solve the incompressible Navier–Stokes equations, the projection method as formulated originally by Chorin

(1968) was chosen for its simplicity and efficiency. The projection method consists of three steps:
(i)
 The momentum equations are solved omitting the pressure terms, to obtain an intermediate velocity field that does

not satisfy the continuity constraint.
(ii)
 The pressure is then solved by using the Poisson equation.
(iii)
 By using the pressure gradient, a provisional velocity field is projected onto a divergence-free space thus resulting in

a velocity field complying with the continuity constraint.
To achieve these three steps, the equations governing the flow are discretized using the finite volume method on a

collocated grid. The detailed description of the discretization and solution using parallel computation is presented in the

Appendix.
3. Three-dimensional flow around a fixed circular cylinder

3.1. Numerical solution set-up

Preliminary 2-D studies were carried out by Labbé (2004) using several grid resolutions: 64� 64, 128� 128 and

256� 256 and various LES models (Smagorinsky, structure function and selective structure function). The grid was an

O-shaped grid with uniformly distributed cells around the perimeter of the cylinder and with the boundaries situated 15

cylinder diameters away from the cylinder.

When comparing the relationship between CDmax , CLmax and Re, the influence of the turbulence model used for the

solution can only be noted for ReX250. This can be expected, as little or no small scale instabilities are present in the

flow for Reynolds number up to about 300.
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D.F.L. Labbé, P.A. Wilson / Journal of Fluids and Structures 23 (2007) 1168–11881172
In the case where no turbulence models were used, or when the Smagorinsky or selective structure function were used,

both the lift and drag coefficients were overpredicted. Furthermore, the difference between the lift coefficient found

numerically and the results found in the literature increased with the Reynolds number.

The Structure Function LES model whether applied using the 128� 128 or 256� 256 grid appeared to slightly

underpredict the drag coefficient for Reynolds number up to about 800. However, this model produces very good

results for the lift coefficients. Also, very small differences between the results on the two grids for this turbulence model

could be noted (Table 1). Such a finding can be corroborated by those of Breuer (2000) who came to the conclusion

that, when using LES models, greater refinement did not automatically lead to improvements in the results. The

Structure Function LES turbulence model led to a prediction of the force coefficients in better agreement with the data

from Williamson (1996) than other models, particularly for the 128� 128 grid at high Reynolds numbers. As such, and

taking into consideration the computational cost of a 3-D solution, the 128� 128 grid will be used as a base for the 3-D

solutions.

It is reported (Williamson, 1996) that there exist two distinct spanwise wavelengths depending on the vortex shedding

modes. When mode A occurs, the wavelength is about four cylinder diameters, while at mode B, it varies around one

cylinder diameter. Clearly, mode A requires a substantially greater spanwise extent of the domain than mode B and, if

one is to capture it, the solution domain must extend at least four cylinder diameters in the spanwise direction.

In the context of the present investigation, three extensions were chosen, namely pD=2, pD and 2pD. This allows for

the cells close to the cylinder surface to have an aspect ratio of 1. Table 2 gives the details of the three grids used here

and Figs. 2 and 3 illustrate the solution domain in the case of Grid F. Grid E is composed of four blocks distributed

across the perimeter of the cylinder as in the 2-D case, while grid F was composed of eight blocks, i.e., two layers of the

grid blocks used in the grid E. Grid D was tested at a later stage and is composed of eight blocks, in the same

configuration as for grid F, but each block a quarter the size of those of grid E. The reason for the greater number of

blocks in comparison to the grid size for grid D was due to a time constraint and the need to carry out the solution at a

faster pace. A symmetric boundary condition was applied for both upper and lower boundaries and a zero-gradient

outflow on the aft part of the cylindrical domain lateral boundaries.

The solution obtained for the steady flow at Re ¼ 40 is used as an initial solution for all the other cases, increasing the

Reynolds number progressively until reaching the desired value. The initial solution being converged, very few

subiterations are required to resolve the pressure field at each time step, thus reducing the overall computation time.

A total of 60 simulations were carried out using the Iridis cluster of the University of Southampton. The processing

nodes used were dual 1.8GHz Xeon processors nodes with 2GB of RAM interconnected by a myrinet network. Each

node carried out the solution of two blocks of the mesh. Thus, the solutions on grid E required two nodes (total of four

processors for four grid blocks) while the solution on grids F and D required four nodes (eight processors for eight grid

blocks).
Table 1

Force coefficients for the 2-D simulations using the Structure Function LES model

Re St CD Cv Cp CL Grid

100 0.164 1.321 0.301 1.020 0.322 128� 128

100 0.166 1.332 0.326 1.006 0.330 256� 256

200 0.195 1.310 0.197 1.113 0.662 128� 128

200 0.200 1.329 0.229 1.100 0.679 256� 256

300 0.205 1.337 0.148 1.190 0.878 128� 128

300 0.210 1.357 0.182 1.174 0.908 256� 256

325 0.215 1.341 0.139 1.202 0.918 128� 128

325 0.215 1.362 0.174 1.188 0.950 256� 256

400 0.221 1.377 0.120 1.257 1.017 128� 128

400 0.215 1.339 0.149 1.190 1.051 256� 256

500 0.225 1.410 0.100 1.310 1.113 128� 128

500 0.234 1.354 0.128 1.226 1.149 256� 256

1000 0.234 1.527 0.061 1.465 1.500 128� 128

1000 0.234 1.417 0.076 1.341 1.407 256� 256
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Table 2

3-D grid details

Grid Spanwise Grid Total number Volume sizes

extension sizes of volumes on cylinder surface

D p=2D 128� 128� 32 524,288

E pD 128� 128� 64 1,048,576 0:0245D� 0:0245D

F 2pD 128� 128� 128 2,097,152

Fig. 2. Grid F—128� 128� 128.

Fig. 3. Grid details near the cylinder.

Table 3

3-D flow past a circular cylinder—case details

Re Re step Time step Minimum residue Turbulence model Simulation time

Paper equations Poisson

40 – 0.0100

125–375 25 0.0100 10�7 10�5 LES-SF 300

400–1000 100 0.0050

D.F.L. Labbé, P.A. Wilson / Journal of Fluids and Structures 23 (2007) 1168–1188 1173
To assess the difference between the 2-D and 3-D results, the same cases as for the 2-D flows were tested on each of

the three grids D, E and F, using the Structure Function LES turbulence model. The general details of the cases set-up

are given in Table 3.
3.2. Three-dimensional lift, drag and Strouhal number

One of the key results in the analysis of the flow past a circular cylinder is the overall force acting on the cylinder.

Generally, this force is decomposed into a streamwise component, i.e., the drag force, and a transverse component,
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i.e., the lift force. Both the drag and lift coefficients are calculated over the duration of the simulation and their

behaviour over time can be analyzed to reveal characteristic aspects of the flow past a circular cylinder. Among other

factors, the Strouhal number can be determined using the lift force coefficient history.

In the present section, the history of the force coefficients for the three grids D, E and F is presented and analysed

over the range of Reynolds numbers considered. Key relationships between the lift, drag, Strouhal number and

Reynolds number are then deduced and discussed.

As the simulations are carried out using a boundary-condition-driven method, the local Reynolds number around the

cylinder is progressively increased. As a consequence, the flow will always be 2-D in the initial stages of the simulations.

Whether three-dimensionalities appear in the flow after a certain time is then dependent upon the considered Reynolds

number. It is thus expected that the history of the force coefficients will reflect such a transition from 2-D to 3-D flows

for Reynolds numbers above approximately 200.

Tables 4, 5 and 6 display the results obtained for grids D, E and F. The history of the force coefficients for the three

grids as illustrated in Fig. 4 for Re ¼ 700 reveals several interesting features.

The first noticeable one is the transition between the purely 2-D flow and the 3-D flow mentioned above. The regular

sinusoidal oscillations with constant amplitudes of both the lift and drag coefficients for ReX300 change to oscillations

with more irregular amplitudes when the 3-D instabilities appear. These changes in the force coefficient traces have

some consequences on the Strouhal number obtained. For the 2-D part of the flow, the frequency of oscillations of the

lift coefficient, i.e., the frequency of the vortex shedding should match the one found in the 2-D simulations, while the

frequency of the oscillation after the wake becomes 3-D should be different. In the power spectrum of the lift coefficient

(Fig. 4), a secondary weaker peak appears and separates from the main one as Re is increased. Although it is sometimes

difficult to see it clearly, this secondary peak occurs in fact at the Strouhal frequency of the 2-D part of the flow.

As the spanwise extension is increased from p=2 for grid D to 2p for grid F, the occurrence of the oscillation of the

coefficients is delayed in time. Furthermore, the period over which the flow is 2-D increases with the spanwise extension.

This difference is particularly noticeable when comparing the traces obtained with grid D with the traces from the other

two grids. Interestingly, one could have supposed that the opposite should occur as the shorter spanwise extension

would promote 2-D flows.

Another interesting feature that appears for ReX300 is the quasiperiodic beat phenomenon. As can be observed in

Fig. 4, the beat is more pronounced as the spanwise extension is decreased. This seems to contradict the findings of Lei

et al. (2001) who could only observe the quasiperiodic beat phenomenon for extensions greater than two cylinder

diameters at Re ¼ 1000. An explanation may be because of the coarser grids used in their simulation. Early tests carried

out on coarse grids in the present research revealed much more regular behaviour of the force coefficients than for finer
Table 4

Force coefficients for grid D

Re St CD CDv CDp
cCL

dCLv
dCLp

100 0.166 1.328 0.309 1.019 0.328 0.038 0.296

125 0.181 1.314 0.273 1.041 0.428 0.043 0.392

150 0.181 1.310 0.246 1.064 0.521 0.047 0.482

175 0.190 1.313 0.225 1.088 0.606 0.049 0.565

200 0.195 1.318 0.207 1.111 0.683 0.050 0.642

225 0.200 1.324 0.193 1.131 0.752 0.051 0.710

250 0.200 1.318 0.179 1.140 0.812 0.051 0.771

275 0.205 1.308 0.166 1.142 0.842 0.049 0.801

300 0.200 1.307 0.156 1.151 0.784 0.044 0.749

325 0.205 1.314 0.147 1.166 0.840 0.044 0.804

350 0.205 1.317 0.139 1.177 0.880 0.044 0.845

375 0.210 1.303 0.131 1.172 0.868 0.041 0.836

400 0.205 1.306 0.125 1.181 0.922 0.041 0.890

500 0.215 1.262 0.102 1.160 1.055 0.039 1.023

600 0.205 1.277 0.087 1.190 1.120 0.036 1.091

700 0.205 1.242 0.075 1.167 1.126 0.032 1.101

800 0.215 1.178 0.064 1.115 0.852 0.025 0.834

900 0.205 1.229 0.059 1.171 1.026 0.024 1.006

1000 0.215 1.155 0.051 1.104 0.651 0.015 0.638
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Table 5

Force coefficients for grid E

Re St CD CDv CDp
cCL

dCLv
dCLp

100 0.166 1.331 0.314 1.018 0.331 0.039 0.299

125 0.176 1.318 0.279 1.039 0.433 0.044 0.396

150 0.181 1.315 0.253 1.062 0.528 0.048 0.488

175 0.190 1.318 0.232 1.086 0.616 0.051 0.574

200 0.200 1.323 0.215 1.108 0.696 0.052 0.653

225 0.200 1.328 0.201 1.127 0.767 0.053 0.724

250 0.205 1.328 0.188 1.140 0.830 0.054 0.787

275 0.205 1.309 0.175 1.134 0.885 0.054 0.842

300 0.205 1.302 0.155 1.146 0.850 0.047 0.810

325 0.205 1.302 0.146 1.156 0.839 0.044 0.803

350 0.205 1.292 0.138 1.154 0.819 0.041 0.786

375 0.205 1.264 0.128 1.136 0.845 0.040 0.813

400 0.205 1.264 0.122 1.142 0.795 0.036 0.766

500 0.205 1.256 0.101 1.154 0.830 0.032 0.804

600 0.215 1.211 0.084 1.126 0.781 0.027 0.759

700 0.205 1.213 0.074 1.140 0.851 0.026 0.830

800 0.205 1.177 0.064 1.113 0.890 0.024 0.872

900 0.219 1.195 0.058 1.138 0.826 0.020 0.808

1000 0.215 1.203 0.052 1.151 0.717 0.017 0.703

Table 6

Force coefficients for grid F

Re St CD CDv CDp
cCL

dCLv
dCLp

100 0.161 1.327 0.309 1.019 0.328 0.038 0.296

125 0.176 1.313 0.273 1.040 0.428 0.043 0.392

150 0.186 1.310 0.246 1.064 0.521 0.047 0.482

175 0.190 1.313 0.225 1.088 0.606 0.049 0.565

200 0.195 1.318 0.207 1.111 0.683 0.050 0.642

250 0.205 1.307 0.177 1.130 0.811 0.051 0.769

275 0.200 1.268 0.162 1.106 0.846 0.050 0.805

300 0.205 1.287 0.154 1.132 0.745 0.042 0.709

325 0.205 1.299 0.146 1.153 0.810 0.042 0.776

375 0.205 1.268 0.129 1.139 0.782 0.037 0.752

400 0.205 1.262 0.122 1.140 0.777 0.036 0.748

500 0.205 1.253 0.101 1.151 0.820 0.032 0.793

700 0.205 1.224 0.074 1.150 0.783 0.024 0.765

800 0.205 1.193 0.064 1.129 0.732 0.020 0.716

900 0.205 1.237 0.059 1.178 0.703 0.018 0.690

1000 0.215 1.200 0.052 1.148 0.687 0.016 0.674
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grids at Re � 1000. It seems thus reasonable to suggest that a coarse grid that cannot capture the small-scale

instabilities, and would not be able to predict accurately the forces acting on the cylinder.

The secondary oscillations (quasi-periodic beat) observed in the lift coefficient traces are such that in the case of the

lower pD=2 spanwise extension, the lift reaches both lower and higher values than for the greater extensions. This is

particularly evident for Reynolds numbers between 350 and 700. As a consequence, the maximum lift values obtained

with grid D are expected to be higher than for the other two grids for this range of Re. For the lower and higher

Reynolds numbers, the beat is not so accentuated and matches that observed in the traces obtained with grid E and F in

a better fashion.

Some of the findings described above are essential to understand the relationships between the Reynolds number and

the Strouhal number, the average drag coefficient and maximum lift coefficient. In Fig. 5, a comparison is made

between the Strouhal–Reynolds number relationship for the three grids studied and the data obtained experimentally
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by Williamson (1996). The results show very good agreement with the experimental data. In particular, the transition

between the 2-D and 3-D parts of the curves is well predicted on all three grids.

The drag coefficient versus Reynolds number relationship shown in Fig. 5 also exhibits a very good correspondence

with the data found in the literature. For the higher Reynolds numbers, there exists a relative scatter in the results. This

could be due to a resolution issue in the FFT method where the frequency obtained depends highly on the time over

which the sampling is taken and the number of periods occurring over that time. The error bars on the figure are an

indication of the frequency resolution and, thus, the error on the calculated Strouhal number. However, for each

Reynolds number investigated, the Strouhal numbers obtained with the present method fall in the ranges found in the

literature.

It thus seems difficult to assess the difference between the three grids from the St versus Re and CDav versus Re

relationships alone. Fig. 5 contains the numerical results of Henderson (1997) and shows a range of data from both
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experiments and computational methods. Henderson’s (1997) numerical results indicate a value of CD ¼ 1:1 for

Re ¼ 1000, which interestingly is very similar to that calculated and given in Table 5. There are no reasons given in

Henderson (1997) for the differences between experimental and computational values for the 3-D case at high Reynolds

numbers. The computational method described in earlier sections of our paper certainly produced a solution that

converged; however, a different mesh distribution in the cylinder wake could produce values of CD that are closer to the

experimental data. However, it must be borne in mind that each experimental data point has associated error bars and it

is notoriously difficult to gain consistent experimental results, and subtle changes in the drag curve are lost in the

associated experimental scatter.

The differences between the results obtained at different spanwise extensions starts showing when looking at the

relationship between CLmax and Re as illustrated in Fig. 6. Although for Reynolds numbers up to � 350 similar results are

found for the three grids, the maximum lift coefficients found for grid D for 350pRep700 are overpredicted and thus a lot

closer to the 2-D results than the other two grids. This is a consequence of the more accentuated quasi-beating phenomenon

observed in the coefficient traces and discussed previously. For ReX700, the lift coefficients obtained with grid D tend

toward those obtained with the other two grids suggesting that the three curves would eventually converge for ReX1000.

Despite the differences in results discussed above, the analysis of the force coefficients is not sufficient to clearly assess

the influence of the spanwise extension on the 3-D wake behind a circular cylinder. In particular, the quasi-beating

phenomenon observed for all three grids suggests that differences in the wake of the cylinder could be observed for the

various spanwise extensions. It is thus necessary to investigate the vortex shedding using adequate visualization.

3.3. Vortex shedding modes

In the present section, an analysis of a visualization of the results obtained is carried out. The core part of the analysis

will focus on the components of vorticity in the wake of the cylinder. The visualization was developed using the IBM

Data Explorer software (see http://www.opendx.org).

It has been shown (Williamson, 1988) that there exist two modes of vortex shedding in the transition to 3-D wake.

Furthermore, each of these two modes corresponds to a spanwise instability in the wake and has a distinct geometry

(Williamson, 1996). In mode A, the streamwise vortices of one sign are in a staggered arrangement from one braid

region to the next, while in mode B, an in-line arrangement of streamwise vortices of the same sign can be seen.

In addition to their specific geometry, modes A and B exhibit very different spanwise wavelengths. Although a

relative scatter of the data can be seen in the literature, it is usually found that, in mode A, the spanwise wavelength is of

about 4D, while it is of about 1D for mode B. As a consequence, grid F used in the present research should be adequate

to capture mode A as its spanwise extension is 2pD. Grid E of spanwise extension pD might be a bit too short to capture

fully the mode, and grid D with an extension of pD=2 should not allow for mode A to be well predicted. All three grids

on the other hand should be able to capture the vortex shedding mode B.

3.3.1. Mode A

In Fig. 7, the influence of the spanwise extension is shown by comparing the streamwise and spanwise components of

vorticity at Re ¼ 200 on the three grids D, E and F. Grid F clearly captures mode A and exhibits a spanwise wavelength

http://www.opendx.org
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Fig. 8. Mode A vortex shedding: comparison of the streamwise and spanwise components of vorticity for grids D and E at Re ¼ 225.

Fig. 7. Domain spanwise extension influence on mode A vortex shedding. Comparison of the streamwise and spanwise components of

vorticity for grid D (top), grid E (middle) and grid F (bottom) at Re ¼ 200.
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of about 4D. Since this is slightly more than the spanwise extension of grid E, it is understandable that the visualization

shows a partially predicted mode A on grid E. Another interesting comment can be made from this visualization

regarding grid D. Although the spanwise extension of grid D is far too short to capture mode A, its extension is close to

half a wavelength, thus explaining the reason for seeing what appears to be half of the spanwise period.

It thus appears that grid D, through the nonperiodic spanwise boundary conditions, is capable of capturing half of

the spanwise wavelength of the vortex shedding. In Fig. 8, the visualization of the streamwise and spanwise vorticity for

grid D and E at Re ¼ 225 supports this argument by showing a complete wavelength period in the case of grid E and an

exact half period for grid D. Although it was not possible to produce a comparative visualization for grid F owing to
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the absence of results at this particular Reynolds number, it appears that for Re ¼ 225, the spanwise wavelength is

closer to pD, thus suggesting that the vortex shedding mode A may have indeed different spanwise wavelengths

depending on the Reynolds number. This could explain the relative scatter of data reported by Williamson (1996).

The comparison between the experimental visualization of mode A by Williamson (1996) and the present numerical

simulation at Re ¼ 200 shown in Fig. 9 shows a remarkably similar pattern in the vorticity. Furthermore, the

wavelength shown in both cases is in very good agreement. This confirms that the present method is capable of

accurately predicting the vortex shedding mode A, provided the grid possesses sufficient spanwise extension. Although

grid E resulted in a good prediction of the wake for Re ¼ 225 and grid D could predict half a wavelength, most of mode

A occurs at a spanwise extension of about 4D. It can be concluded that a spanwise extension of at least 2D is required to

capture half a wavelength at mode A and one of at least 4D for the complete wavelength.
Fig. 10. Mode A to mode B transition. Streamwise and spanwise components of vorticity for grid F, mode A at Re ¼ 200 (top),

transition at Re ¼ 250 (middle), and mode B at Re ¼ 300 (bottom).

Fig. 9. Mode A vortex shedding at Re ¼ 200. Left: experiment (Williamson, 1996); right: present simulation.
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3.3.2. Mode B

The transition to the vortex shedding mode B is somewhat difficult to investigate as numerous simulations would be

required in the Reynolds number range where it occurs. Since at Re ¼ 200 it is clearly established that mode A is

occurring, and since the transition occurs approximately between Re ¼ 230 and 260, a visualization of the vorticity in

the wake of the cylinder for 200pRep300 should give an insight into the transition phase.

A confirmation of this hypothesis is given in Fig. 10 where clear evidence of the occurrence of both modes A and B

are provided for Re ¼ 200 and 300 on grid F. The visualization at Re ¼ 250 shown in this figure is extremely interesting

as it exhibits a vortex pattern complying with mode A but with much thinner vortex layers, indicating the transition to

mode B. Furthermore, a clear difference with the pure mode A vortex shedding patterns can be seen in the spanwise

component of vorticity.

Further evidence of the transition between the two vortex shedding modes is given in Fig. 11 where the transversal

component of velocity is shown in the symmetry plane in the wake of the cylinder. A clear wavy pattern shows

at Re ¼ 250 but does not appear at Re ¼ 200. At Re ¼ 300, although there seems to be an oscillation in the

spanwise direction of the transversal component of velocity, the patterns exhibited are much more uniform than for

Re ¼ 250.

For ReX300, the shedding of vortices in the wake of the cylinder follows the pattern of mode B. As shown in Fig. 12,

the prediction of mode B with grid F compares remarkably well with both experimental (Williamson, 1996) and

numerical (Poncet, 2001) results found in the literature.

Since the wavelength of mode B is close to 1D, the three spanwise extensions are sufficient to capture the mode as

illustrated by Fig. 13. Indeed, the visualization of the wake vorticity for the three grids reveals that for ReX300, the

spanwise wavelength is approximately equal to 1D at Re ¼ 300, decreasing slightly as the Reynolds number increases to

approximately 0:8D for Re ¼ 1000.

3.3.3. Spanwise wavelength and extension

Determining the wavelength is rather difficult from the visualization, particularly at the higher Reynolds number

where the wake is more chaotic. However, by looking at the wake close to the cylinder, i.e., at approximately x=D ¼ 3,

it is possible to estimate the wavelength of the 3-D instabilities by averaging a number of periods over the spanwise

extension of the cylinder.

Although using such a method may appear rather inaccurate, considering that very few periods can be observed

particularly for the shortest extension (grid D), the resulting estimation agrees rather well with Williamson’s (1996)

measurements as shown in Fig. 14. The separation between the wavelengths at mode A and those at mode B clearly

appears and compares well with Williamson’s trends.

Furthermore, the wavelengths obtained for grids E and F are similar, those obtained for grid D at a spanwise

extension of pD=2 are slightly shorter for the Reynolds numbers between 250 and 600. Considering that only a

single period could be measured from the visualization of the spanwise vorticity on grid D, the estimation could

be rather inaccurate for this particular grid. However, the fact that the wavelength is systematically lower suggests that

the spanwise extension and most probably the boundary conditions imposed in that direction affected the 3-D

instabilities.

3.4. Summary

The investigation of the effects of the spanwise extension on the 3-D wake of a circular cylinder revealed several

interesting facts.

The analysis of the force coefficients obtained for the three spanwise extensions led to the conclusion that the pD (grid

E) and 2pD (grid F) extensions produced similar results. In the case where the extension was only of pD=2, both
Strouhal number and average drag coefficient were reasonably predicted. However, owing to the more pronounced

quasiperiodic beat phenomenon, the lift coefficient amplitude was overpredicted. Nevertheless, the trend observed in

the lift coefficient amplitude for that extension suggested that as the Reynolds number is increased, the prediction of the

force coefficient for grid D would converge with the other two grids.

The visualization of the vorticity in the wake of the cylinder confirmed that both grids D and E are not well suited to

predict the vortex shedding mode A across the whole range of Reynolds number where it occurs. However, a very

interesting result at Re ¼ 225 showed that grid D was capable of predicting an exact half wavelength of mode A. Grid F

on the other hand allowed for mode A to be fully captured and the transition between modes A and B to be visualized.

For the vortex shedding mode B, it was found that all three extensions and in particular the shortest p=2 extension

produced similar wake vorticity patterns. The agreement between the spanwise and streamwise vorticity observed for
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Fig. 11. Mode A to mode B transition. Transversal components of velocity ðV Þ for grid F. Mode A at Re ¼ 200 (top), transition at

Re ¼ 250 (middle), and mode B at Re ¼ 300 (bottom).

Fig. 12. Vortex shedding in the wake of a circular cylinder at Re ¼ 400. From left to right: experimental (Williamson, 1996) numerical

(Poncet, 2001), and present numerical solution.
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the three grids therefore suggests that the extension of grid D is sufficient to predict the flow past a circular cylinder at

Reynolds numbers in the mode B range.

Finally, the estimated spanwise wavelength obtained from the visualization of the 3-D instabilities compared very

well with experimental data found in the literature for all three spanwise extensions investigated thus confirming that

the 3-D instabilities are well predicted in all three cases.
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(middle) and grid F (bottom) at Re ¼ 300.
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4. Conclusions

In light of these findings, it is possible to conclude that a finite spanwise extension of the cylinder is sufficient to

predict the flows past an infinitely long circular cylinder in the considered range of Reynolds numbers. Clear evidence

was produced showing that the minimum spanwise extension required for flows at low Reynolds numbers up to about

300 was in the region of four cylinder diameters. For higher Reynolds numbers, a shorter spanwise extension between

pD=2 and pD is sufficient to predict accurately all the characteristic components of the flow, namely the force

coefficients, the Strouhal number and also the 3-D instabilities and their wavelength. Furthermore, it is reasonable to

suggest that such conclusions could extend beyond the range of Reynolds number studied in the present investigation.
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Appendix A

A.1. Flow governing equations

The incompressible Navier–Stokes equations in curvilinear coordinates and filtered for the large eddy simulation

turbulence model can be written as follows in a nondimensional form and using tensor notation:

Continuity:

qðJUiÞ

qxi

¼ 0; (A.1)

Momentum:

q
qt
ðJū�i Þ þ

q
qxk

ðUr
�k

ū�i Þ ¼ �J�1S
j
i

qq̄

qxj

þ
q
qxk

1

Re
þ

1

Ret

� �
J�1Sk

j Sl
j

qū�i
qxl

� �� �
; (A.2)

where J is the Jacobian of the coordinate transformation,

J ¼
Dðx; y; zÞ

Dðx; Z; zÞ
, (A.3)

Si
j are the metrics of the transformation defined by,

Si
j ¼ J

qxi

qxj

; with i; j and k cyclic, (A.4)

U
j
is the filtered contravariant component of velocity,

U
j
¼ S

j
i ūi, (A.5)

Ur
j
is the filtered contravariant component of relative velocity,

Ur
j
¼ S

j
iðūi � ugiÞ, (A.6)

with ugi being the filtered grid velocity component, and q̄ the pseudo-pressure defined by,

q̄ ¼ p̄� 1
3
tll . (A.7)

In Eq. (A.2), Ret is the turbulent Reynolds number as obtained using one of the Structure Function LES models

(Métais and Lesieur, 1992):

Ret ¼
U1D

0:063D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðx;DtÞ

p , (A.8)

where D is the filter width, usually taken as an average of the mesh sizes, and where the function F2 can be obtained

from

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDyDz3

p
; F2 ¼ hkuðxþ rÞ � uðxÞk2ikrk¼1. (A.9)

A.2. Boundary conditions implementation

From the discretization presented previously, and taking into account that the flow is solved using the primitive

variables at the cell centre, it appears quite clear that the computational cell (Fig. A.1) used in solving the set of

equations is composed of a single layer of cells around the current cell. However, at the domain boundaries, some of the

neighbouring cells are nonexistent. To account for such absence of cells, a layer of so-called ghost cells is introduced

around the block. Such ghost cells must then be set to represent appropriately the boundary conditions. Conveniently,
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Fig. A.1. The computational cell.

Fig. A.2. Multi-block domain decomposition.
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these ghost cells can also be used to store information from adjacent blocks. The overlapping mesh strategy can thus be

enforced in a straightforward manner using the ghost cells as the overlapping mesh area. Figure A.2 illustrates the

subdivision of a domain into subdomains, and the data dependency between the subdomains with the overlapping mesh

strategy.

In most cases, the boundary conditions used in the resolution of the Navier–Stokes equations are associated with the

velocity, the nature of the problem usually not providing enough information on the pressure at the boundary except in

cases such as free-surface flows. For each variable, i.e., velocity and pressure, the boundary G is subdivided into GD,

where Dirichlet boundary conditions apply (such as u ¼ gð~x; tÞ), and GN , where Neumann boundary conditions apply

(such as qf=qn ¼ 0 where n denotes the direction normal to the face of the cell where the condition applies).

In practical terms, the most common boundary conditions encountered in flow computations are the in-flow

(constant or variable), the out-flow, the solid wall (fixed or moving), the symmetry and the periodic boundary

conditions. Such conditions are enforced by setting the velocity and pressure in the ghost cells. Whether a Dirichlet or a
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Neumann condition is to be used, all the boundary conditions (with the exception of the periodic one) can be

interpreted in a generic formulation,

fGC ¼ C1 þ C2fDC, (A.10)

where subscripts GC and DC denote the ghost cell and the neighbouring domain cell variables, respectively, f can be

the velocity components or the pressure and the constants C1 and C2 depend on the conditions to be applied. Table A.1

summarizes the constants used for each boundary condition.

One aspect of multi-block computation rarely described by other authors but however well known is that of block

corners. In the particular case of 3-D computations, this extends to the block edges. The reason such corners and edges

are of concern is related to the computational cell used in the discretization scheme and the boundary condition

treatment. In the current implementation, this concerns the ghost cells variables to be set in the corners and edges of

each block of the domain. At this point, it is important to note that only the edges of the blocks are of interest since the

block corner values are never used in the computational stencil. In the 2-D case, the block corners are in fact a special

case of block edges. Figure A.3 illustrates a block edge with the notation adopted for the variables to be set. The

subscripts DCE and GCE denote variable in the domain edge (domain cell) and in the block edge (ghost cell).

It can be shown that all the possible combinations of boundary conditions can be enforced at the block edges using a

generalized formulation where the value of the velocity in the edge ghost cell can be set by

uGCE ¼ C3uGC0 þ C4uGC1 þ C5uDCE, (A.11)

where C3, C4 and C5 are constants set according to the boundary conditions on each side of the edge. Table A.2

summarizes the constants used for each case.

For the pressure, a simple extrapolation technique is used based on the value of the pressure in the ghost cells on each

side of the edge.

A.3. Overall flow solution procedure

Having derived the various equations to be solved and suitable methods to solve them, the general procedure for the

solution of the flow will be summarized in algorithm A.4. Since the solution is iterative, it is important to determine a

stopping criterion for the loop. Generally, a maximum number of iteration (time steps) can be set, but in the case of a

steady flow, the solution may converge before reaching the maximum number of iterations. A residue must thus be
Fig. A.3. Block edges layout and notation.

Table A.1

Ghost cell boundary condition constants

Boundary condition Velocity Pressure

C1 C2 C1 C2

In-flow 2 uinflow �1 0 1

Out-flow 0 1 2 pref �1

Wall (fixed or moving) 2 uwall �1 0 1

Symmetry (X i , X j plane) 1 for ui and uj 0

0 �1 for uk 0 1
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Table A.2

Ghost cell boundary condition velocity constants at block edge

Boundary condition

Face0 Face 1 Edge type C3 C4 C5

Solid

Inflow Outflow 1 1 0 0

Interface

Solid

Outflow Interface 0 0 1 0

Inflow

Inflow Interface

Interface Inflow

Solid Solid 0/1 0 0 1

Inflow Inflow

Outflow Outflow

Solid Interface 1 1 �1 1

Inflow

Interface

Inflow Solid 0 �1 1 1
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calculated to assess the difference between the solutions at two consecutive time steps. If such a difference is below a

certain tolerance level, the solution is assumed steady and thus converged. One way to determine the convergence is by

comparing the velocity field between two consecutive time steps.

A.4. Global flow solution algorithm

For k ¼ 1 to k ¼ ðmax : num. of iterationÞ:
(1)
 Solve the equations using SOR or CG.
(2)
 Solve the Poisson equation using SOR or CG.
(3)
 Solve the projection equations.
(4)
 Update the velocity and pressure in the ghost cells at boundaries, interface and block edges.
(5)
 Compute the local solution residue Rlocal based on the velocity:

Rlocal ¼
ð
Pn

i ½
P3

j¼1ju
ðkþ1Þ
ji
� u
ðkÞ
ji
j�Þ

ð
Pn

i ½
P3

j¼1ju
ðkþ1Þ
ji
j�Þ

.

(6)
 Determine the maximum residue across all the processes MPI: all reduce R.
(7)
 If RoðMin: ResidueÞ, then exit.
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